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A~traet--This paper examines the asymptotic behaviour of general probabilistic multiphase flow 
equations in fully developed gas-solids suspension flows as the solids concentration tends toward zero. 
This analysis suggests the existence of self-similar concentration and solids velocity profiles as solutions 
to general multiphase flow equations at low solids loading. The existing experimental evidence confirms 
this theoretical result and strongly suggests this to be a general feature of dilute suspension flows. The 
analysis further suggests that deviations from a similar profile regime as the solids loading is increased 
can be deduced from the relationship between solids flowrate and mean solids concentrations. Finally, 
the flow equation analysis provides a partial explanation for the difficulty associated with developing 
generalizable suspension pressure drop correlations. 
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I N T R O D U C T I O N  

Gas-solids suspensions flow vertically in many industrial processes, ranging from pneumatic 
transport to fluidized bed reactors, including risers in the petroleum industry, transport reactors 
and circulating fluidized beds. For these industrial applications, the properties of the suspension 
velocity and concentration profiles are at least as important as the overall characterization of the 
hydrodynamics. However, compared with the considerable number of papers dealing with 
gas-solids suspensions in general, the literature is rather poor as far as the radial distribution of 
particles in the flow, or the velocity profiles of both phases are concerned. In addition, experimental 
studies devoted to the determination of flow patterns are limited to specific operating conditions 
and their conclusions can rarely be generalized due to the large number of overall variables 
characterizing the flow of gas-solids mixtures. Moreover, modelling of gas-solids suspension flows 
is difficult, since the laws governing interphase interactions are far from well understood. 

The general probabilistic multiphase flow equations (Molodtsof & Muzyka 1989) provide a 
rigorous basis for the analysis of the flow structure of suspensions. The work presented in this paper 
starts from this basis and derives self-similar concentration and velocity profiles as asymptotic 
solutions to the general equations for vertical gas-solids suspensions in fully developed dilute phase 
flow conditions. 

S U R V E Y  O F  T H E  L I T E R A T U R E :  E X P E R I M E N T A L  O B S E R V A T I O N S  

Several authors have reported radial particle velocity profile measurements (van Zoonen 1962; 
Konno & Saito 1969; Reddy & Pei 1969; Kramer 1970; Arundel et al. 1970, 1974; Lee & Durst 
1982; Birchenough & Mason 1976; Maeda et al. 1980; Tsuji et al. 1984). Kramer (1970), who 
reports the most complete collection of data, observed that, at constant gas superficial velocity, 
the velocity profiles of 62/~m glass beads deform slightly when the loading ratio increases, whereas 
they remain unchanged for 200 #m beads (figures 1 and 2). Solids velocity profiles, essentially 
independent of solids loading, can also be observed in the results reported by Birchenough & 
Mason (1976), Maeda et  al. (1980) and Tsuji et al. (1984). 

fTo whom correspondence should be addressed. 
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Figure 1. Air and particle velocity profiles reported by Kramer (1970) for 62/~m glass beads carried by 
air in a 0.5" (12.7 mm) i.d. pipe for a gas Reynolds number of 24,500 and different values of the loading 

ratio (M = Ws/Wr). 

On the other hand, gas velocity profiles deform when the particle concentration is increased 
(Doig & Roper 1967; Kramer 1970; Maeda et al. 1980; Tsuji et al. 1984): the profile flattens with 
increasing loading (figures 1 and 2) and becomes even concave in the core of the pipe. The relative 
velocity between the gas and solid particles is neither equal to the terminal free-fall velocity, nor 
constant over the cross-section of the pipe; negative relative velocities have even been reported in 
the vicinity of the wall (Lee & Durst 1982). The latter results from the fact that the velocity of 
the particles is not necessarily zero at the wall but can be positive or negative depending upon 
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Figure 2. Air and particle velocity profiles reported by Kramer (1970) for 200pm glass beads carried by 
air in a 1" (25.4 mm) i.d. pipe for a gas Reynolds number of 24,500 and different values of the loading 

ratio (m -- WJWf). 
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operating conditions. Finally, the presence of the particles modifies the turbulence intensity of the 
gas flow (Maeda et al. 1980; Tsuji et al. 1984). 

Particle concentration profiles have also been reported. They result mostly from direct 
measurements (e.g. van Zoonen 1962; Konno & Saito 1969; Weinstein et al. 1986; Hartge et al. 
1986, 1988). Kramer (1970) deduced the particle concentration profiles from particle velocity and 
number flux measurements. His numerous results show that particle concentrations near the wall 
can be either greater than or less than the concentration in the core, depending on the operating 
conditions, although all other authors reported only concave profiles. At constant superficial 
velocity, the shape of the profiles seems to be essentially independent of solids loading. On the effect 
of particle size and their radial distribution, a recent paper (Dry 1987) reports slight differences 
between the core and the annulus, in a circulating fluidized bed riser, under special operating 
conditions. 

Some authors tried to combine measurements and modelling for the determination of flow 
patterns in circulating fluidized bed risers (Rhodes et al. 1988; Hartge et al. 1988). Their model 
equations, however, contain too many simplifying assumptions to be generalizable. Moreover, the 
results obtained by such methods are necessarily limited to operating conditions under which the 
measurements have been performed. 

Despite the relatively large differences in operating conditions (e.g. pipe diameter and nature, 
particle size and properties, superficial gas velocity range) some common aspects can be traced in 
the work cited above, at least, under conditions of constant superficial gas velocity: 

• The solids velocity profiles seem to be independent of average particle concen- 
tration. 

• The shape of particle concentration profiles seems to be independent of solids 
loading. 

In the next two sections, a theoretical basis will be derived allowing the determination of the 
conditions in which these suggested properties can be generalized. 

FULLY DEVELOPED FLOW 

General Equations 

Molodtsof & Muzyka (1989) developed a general theoretical framework allowing a rigorous 
mathematical description of multiphase mixtures, termed probabilistic Eulerian description. Accord- 
ing to this approach, the presence and all physical quantities (i.e. immediate Eulerian variables) 
of each phase are random variables governed by laws of probability determined by the overall 
boundary conditions imposed to the flow. A given phase p in the mixture is then characterized 
by a phase presence probability Ep and probabilistic mean Eulerian variables of the phases 
are defined as the expected value of the random immediate Eulerian variable under consideration 
(see the appendix). The general probabilistic multiphase flow equations are written in terms of 
these "phase mean variables" which are shown to be identifiable with measurable quantities in the 
flow. 

The probabilistic approach to general equations is well-adapted to the analysis of the asymptotic 
behaviour of gas-solids suspensions to be carried out below since these are local equations written 
in terms of local variables defined so as not to be dependent on the existence of an appropriate 
spatial or temporal averaging domain. Besides, among rigorously derived general flow equations, 
they are the only ones to account for the specifics of gas-solids suspension flow, particularly 
addressing the interactions between particles (Muzyka 1985). In the analysis below, all particle 
phases will be treated as the overall "solids" phase. The conditions under which this is valid (i.e. 
when all the particles have the same physical properties such as density, regardless of their size or 
shape) were studied in an earlier paper (Molodtsof & Muzyka 1989). 

For any phase p of the mixture, a continuity equation is derived: 

+ = o, [ l ]  
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where pp denotes the phase p density and V] are the components of the phase mean velocity. The 
momentum equation of the overall "solids" phase, when projected on the Ox~ axis, takes the 
following form 

ot(P~GVi)+ [P~es(V~Vj+flq)l=psGg,+Fi+ (Ga~j) + (sq), [2] 

where flij denotes the components of the velocity cofluctuation tensor, g~ stands for the components 
of the acceleration of gravity and F~ accounts for the gas-solids interaction force. Two stress tensors 
acting within the particles appear in this equation: a~j accounts for the stresses linked by the fluid; 
while sgj is the probabilistic mean of intermittent stresses due to interparticle and/or wall-particle 
collisions. The momentum equation for the fluid phase is 

0 t3 a 0 
(pf,f v , )  + [ p m ( u ,  uj + "o)1 = ping, - - + ( , , to) ,  [31 

where U~ and B o denote, respectively, the components of gas velocity and the velocity cofluctuation 
tensor, p stands for the pressure and z~j represents the components of viscous stresses acting within 
the fluid. In [2] and [3], the 1.h.s. represents the inertial terms, while all the external forces acting 
on the phase are regrouped on the r.h.s. 

An additional equation relates gas and solids presence probabilities: 

e~ + er = 1. [4] 

These equations cannot be solved in general, since there is an obvious closure problem associated 
with them. 

Fully developed vertical upflow of a suspension 
When a single-phase fluid flows, at a constant rate, in a straight pipe, the longitudinal pressure 

profile becomes linear beyond a certain distance downstream from the entrance; this situation 
corresponds to the establishment of flow patterns which are identical in each cross-section of the 
pipe, and is called fully developed flow. Many authors have intuitively extended this concept to 
suspension flows. Molodtsof (1985) proposed a rigorous definition for the fully developed flow of 
a suspension: when a gas-solids mixture flows in the steady-state conditions (i.e. with time-inde- 
pendent overall boundary conditions such as constant flowrates, end pressures etc.) in a straight 
pipe, the flow is said to be fully developed when the laws of probability governing the presence 
and the velocity of each phase become independent of the axial coordinate. According to this 
definition, in [1]-[4] E~, El, U and V, as well as the velocity cofluctuation tensors are independent 
of the longitudinal coordinate, in fully developed flow conditions. Moreover, the viscous stresses 
which are determined by the local random velocity fields of the fluid, are functions of the transverse 
coordinates only. The same holds true for the sij tensor, since momentum transfers during collisions 
are determined by the random presence and velocities of particles. 

In the case of a vertical pipe of circular cross-section, the flow is axisymmetric, and the only 
remaining transverse coordinate is the radial distance r to the pipe axis. If x denotes the axial 
coordinate upwardly directed, the continuity equation [1] for any phase p simplifies as follows: 

1 c~ (rppEp VPr)+ O 
r Or ~x (ppEp V p) -~ O. [5 ]  

Under fully developed flow conditions, the phase presence and velocities are independent of x; [5] 
can, therefore, be immediately integrated in the form 

rppEp V p = const = [rpp6p VPr ]r= R, [6] 

where R denotes the pipe radius. In [6], the constant is computed at the wall. It is zero, for p = s, 
since, the probability of presence of the solids is zero at the wall (Molodtsof & Muzyka 1989). The 
constant is also zero for the fluid (p = f), according to the no-slip condition. Therefore, the radial 
projections of both phases velocities vanish identically throughout a fully developed flow. 
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The axial projection of [3] takes then the following form: 

l d  c~p l d  
r dr (rPf~'fB'x) - -  - - P f £ f g  - Fx - -  E f ~ x  + r d r r  ( rEG,x) .  [7] 

Since the gas--solids interaction term Fx is determined by the random flow field of the fluid about 
the particles, this term is independent of x following the reasoning applied to the other terms 
reviewed above. The longitudinal pressure gradient is, therefore, independent of the axial 
coordinate in fully developed flow. Molodtsof (1985) showed that this term is also independent of 
r. The pressure gradient is, thus, constant throughout the pipe as in fully developed single-phase 
flow. 

Under the same conditions, [2] simplifies as follows: 

1 d a 1 d + 1 d (rSr x). [8] 
(rpsEsflrx) = --PsEsg + Fx + ES-~x (aXX) +r-~r  r (rEstrrx) r dr r dr 

Molodtsof (1985) showed that a,x is a function of r only and, that the axial gradient of axx is 
constant throughout the flow and equal, with the opposite sign, to the pressure gradient: 

c~--~ (axx) = - c~ = const. [9] 

Thus, under fully developed flow conditions, [8] is entirely independent o fx  and takes the following 
form: 

l d  dp l d  l d  
r dr (rpsEsflr,) = - p~E~g + Fx - E~ ~x + r ~ (rE~a,~) + r -~r (rs,~). [10] 

Equations [7] and [10], together with [4], are the general equations of fully developed vertical 
upflows of a fluid-solids suspension. In the next section, they will be used in the analysis of dilute 
phase flow. 

DILUTE PHASE FLOW OF A SUSPENSION 

Reference f low  

In the probabilistic Eulerian approach, the phase presence probability Ep of a phase p is equal 
to the mean local volume fraction occupied by that phase (Molodtsof 1985). Consequently, Es is 
the local solids volumetric concentration. An average concentration can be defined as follows: lff 

c = ~ 2nr~s(r) dr, [11] 

which characterizes the average volumetric concentration of solids over a cross-section. 
Many of the authors dealing with gas-solids suspensions compare the behaviour of the 

suspension to that of the gas alone. This reference f low is defined as that of the gas alone flowing 
in the same pipe with the same superficial velocity ~ (i.e. the same flowrate) as in the suspension. 
The momentum equation of this reference flow follows from the equations of single-phase flow: 

1 d ~p0 1 d (rZ0x) ' [12] 
r dr (rpfB°x) = - P f g  - ~ x  + rdrr 

where the 0 superscript indicates the reference flow variables. The velocity cofluctuation tensor 
(multiplied by density) corresponds, then, to the turbulent Reynolds stresses. 

When, in pneumatic transport for instance, the solids rate fed into the gas is progressively 
reduced to zero while the superficial gas velocity ~ is maintained constant, the installation becomes 
empty of solids, i.e. the average solids concentration c reduces progressively to zero and the gas 
flows alone (reference flow) in the pipe. Therefore, when c--. 0, each term in [7] should tend toward 
the corresponding term of [12]. In other words, [12] is the limit, by continuity, of [7] when c--. 0. 
All fluid phase variables should, then, tend asymptotically toward the corresponding variables of 
the reference flow as, according to [4], Er --* 1 throughout the pipe. Therefore, it can be reasonably 
assumed that as c ~ 0, Es--* 0 throughout the pipe in such a way that E, remains of the same order 
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of magnitude as c. This hypothesis means that no solids accumulation region exists in a 
cross-section. 

Asymptotic behaviour of  gas flow variables 
According to the continuity limit assumption stated above, for e = 0, the shearing component 

B,x of the velocity cofluctuation tensor is equal to the corresponding term of the reference flow. 
In the suspension, this term differs from the latter because of the perturbations induced in the gas 
flow due to the presence of particles. In the vicinity of a particle, the turbulent cofluctuation B°x 
becomes then, br~. In the case of a single particle, ~ 0 brx B,x beyond distances about several particle 
diameters. Thus, the volume in which b,x differs from its limiting value is proportional to the volume 
of the particle. Let k be the ratio of this volume in which the reference flow field is perturbated, 
to that of the particle. Let us consider now a suspension containing only a few particles such that 
kE~ < Er. This condition corresponds essentially to the non-overlapping of the individual perturbated 
volumes and certainly becomes satisfied as c ~ 0. At a given instant, the probability, for a point 
occupied by the gas, to be located within the perturbated volume is (kE~) while the complementary 
probability is (1 -kc~). Thus, if brx denotes the probabilistic mean cofluctuation in the perturbated 
volume, one has, on average: 

Br~ = k¢sb,, + (1 - kEs)B°rx . [13] 

Using [4], the following asymptotic form can, finally, be derived: 
__ 0 1 2 erBr~ - Brx + E~Brx + O(c ), [14] 

where, B~x is independent of the solids concentration. 
An analogous asymptotic expression identifiable with a Maclaurin series development limited to 

first-order terms can be derived for the other terms of [7]. Indeed, for the viscous term, Molodtsof 
(1985) presented the following equation (see [A.10] in the appendix): 

d d~s-] 
C.r'C.r.,,=,U Tr (E~u~) + V, ~r [, [15] 

where V~ is the "interfacial" mean velocity of the particles. Using a Maclaurin series development 
for EfU~, 

EfU~ = U ° + E~ U~ + 0(c2), [16] 

[15] leads to 

.[d l 
Efzr~ = z,° + -~rr(esU~)+ VI d r j+O(c2) .  [17] 

The gas-solids interaction force F~ should identically vanish as c ~0.  Its asymptotic behaviour is, 
therefore, of the form: 

Fx = EsF~ + 0(c2). [18] 

The asymptotic form of the pressure drop term in [7] can be deduced from the numerous 
experimental results reported in the literature. A general concensus exists (e.g. Muzyka 1985) about 
the following form in dilute phase flow: 

ap Op ° +caP ' [19] 
a~ = a-~ T ~ '  

where the first term on the r.h.s, is the pressure drop of the gas alone (reference flow), and the 
coefficient of c in the second term is determined only by the superficial gas velocity for a given solid 
and a given pipe. 

The expressions obtained in [14] and [17]-[19] can now be substituted for the terms appearing 
in [7]. The reference flow terms are eliminated by subtracting [12]. Neglecting the second-order 
terms 0(c2), the following result is then obtained: 

_ _  (EsOp° 0p"~ l d [  d , d~s] 
l d (rpfe, B)x)=esprg_E,V~+ \ - ~ x - C " ~ x )  +r-~rr rP~rr(e, Ux)+rVl_~x " [20] r dr 
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When considered in terms of local solids concentration es, [20] is a second-order differential 
equation with variable coefficients, of the following form: 

d2Es des 
A (r) ~r 2 + B(r) ~r + C(r)Q(r) + cD(r) = O. [21] 

It should be noted that if coefficients A, B, C and D do not indirectly depend on either es or c, 
[21] is a homogenous equation in terms of solids concentration. 

SELF-SIMILAR PROFILES 

Equation [20] (or formally [21]) is, therefore, a differential equation governing the distribution 
of the particles in a cross-section. If one can compute the coefficients A-D, the complete solution 
can be obtained by solving this equation with the following boundary conditions (Molodtsof & 
Muzyka 1989): 

dE s 
es=0 and ~ = 0  f o r r = R .  [22] 

These boundary conditions are independent of the average solids concentration c. Thus, the 
homogenous differential equation [21], together with the above boundary conditions determine the 
shape of the solids concentration profile es(r) regardless of the average concentration c. In other 
words, if we define a "reduced" concentration profile: 

es(r) 
f(r) = - - ,  [23] 

c 

which characterizes the shape of the concentration profile, [21] and [22] divided by c become the 
equations determiningf(r). These equations are independent of c provided that coefficient functions 
A-D are independent of c. The concentration profiles es(r) would be, then, self-similar profiles 
proportional to the average solids concentration c. 

The average concentration c would, then, be determined by the overall solids rate W s according 
to the following defining equation: 

Ws = 2fores(r) Vx(r) dr = c 2~rf(r)Vx(r) dr. [24] 

The coefficients A-D depend upon the superficial gas velocity ~ .  They are explicitly independent 
of c as seen in the Maclaurin series developments derived above; but they can be implicit functions 
of the average concentration if the solids velocity profile depend on c. Indeed, some of the 
first-order asymptotic terms such as, VI, the gas-solids interaction term and the additional pressure 
drop (Muzyka et al. 1983) depend on the random particle velocities. Consequently, solids velocity 
profiles independent of c are a necessary condition for self-similar concentration profiles. 

In fact, considerable experimental evidence exists which suggests that this necessary condition 
is satisfied in dilute phase flow. Considering, however, only theoretical arguments, it can be 
noted that the solids velocity field should be determined by [10] in which all the terms should 
identically vanish as c ~ 0. No zeroth-order term exist therefore in the asymptotic form of this 
equation. A first-order approximation can be derived using Maclaurin series developments as 
follows: 

es¢s = esO] + O(c 2) [25] 

for any one of the solids variables denoted here as ~Os. According to [25], the first-order term is 
independent of e. A differential equation is then obtained, which, divided by e takes the following 
form: 

A,(r;f)  ~-~ + Bs(r; V x ) ~  + Q(r;f ,  VD=0.  [26] 
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The boundary conditions applying to [26] are given by [22], to which the following should be 
added: 

dVx 
d---~- = 0 for r = 0, [27] 

since no additional boundary condition at the wall (such as a no-slip condition) can be formulated 
for the particles. Again, the boundary conditions are independent of c and the variable coefficients 
As, Bs and Cs are also independent of c provided that the concentration profiles are self-similar. 
Consequently, the solution of [26] with the related boundary conditions is, in turn, independent 
of the average solids concentration. In other words, solids velocity profiles independent o f  average 
concentration and self-similar concentration profiles are mutually necessary conditions which have to 
be simultaneously satisfied otherwise, both are invalid. 

In conclusion, the results obtained in this section can be summarized as follows: concentration 
and velocity profiles of the form 

and 

G (r ) = cf(r ; ql), [28] 

V~(r) = IZ~(r; q/) [29] 

U~(r) = U°(r; q/) + Es(r; q/)U~(r; q/) + O(c 2) [30] 

are consistent asymptotic solutions to the general equations for the dilute phase, fully developed 
pipe flow of gas-solids suspensions as the average solids volumetric concentration tends toward zero. 
Equations [28]-[30], thus, define a possible set of  f low patterns in gas-solids suspension flow. The 
similarity properties of the profiles derived in this approach can be generalized to suspensions 
flowing in an inclined or horizontal pipe of non-circular cross-section (Molodtsof 1985) provided 
that dilute phase (i.e. c ~ 0) and fully developed flow conditions are satisfied. 

DISCUSSION 

The similar profiles summarized in [28]-[30] are referred to as a possible set of flow patterns since 
the uniqueness of these asymptotic solutions cannot be shown using the general equations at the 
present stage of our knowledge because of the closure problem. It falls, therefore, to experimental 
investigations to confirm the existence of such a similar profile regime in practical cases, for dilute 
phase flow conditions. In our survey of the literature, we have already observed that several authors 
reported flow patterns consistent with [28]-[30]. Azzi and co-workers (Azzi 1986; Monceaux et al. 
1986) reported self-similar particle mass flux profiles for 60 #m cracking catalyst particles carried 
by atmospheric air in the 144 mm i.d. plexiglass riser of a circulating fluidized bed, for volumetric 
solids concentrations up to about 4-5%. Consequently, it seems that, the similarity properties of 
the flow patterns deduced from the theoretical considerations developed above are not a singular 
solution of the general equations, but correspond to a generalizable feature. Moreover, whereas 
the definition of what constitutes "dilute phase flow" is still ambiguous in the literature (Mok et al. 
1989), here it acquires a clear physical significance as it corresponds to the above characterized 
similar profile regime. 

The second point to be emphasized concerns the value of the average concentration up to which 
the similarity properties, or, in other words, the similar profile regime is maintained. Again, this 
limiting value cannot be deduced from theoretical arguments because of the closure problem. It 
should be noted, however, that, the transition, which is expected to occur, from the similar profile 
regime toward a denser flow regime in which the particle concentration and velocity profiles are 
no longer self-similar with increasing average concentration, should also be detectable in terms of 
overall variables, i.e. in a c vs Ws plot. This latter fact can be deduced from [24]. Indeed, as seen 
in this equation, Ws and c are proportional in the similar profile regime. But as soon as the profiles 
f ( r )  and/or V~(r) begin to deform with increasing solids loading, the proportionality disappears. 
Consequently, the transition could be seen in the c vs W~ plot as a departure from proportionality. 
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This indeed occurs, as reported by Azzi and co-workers (Azzi 1986; Monceaux et al. 1986). As 
shown by these authors, and also by the experimental results of Mok et al. (1989), beyond 
transition, the trend of variation of the average concentration with the solids rate is still linear but 
with a negative intercept. A large number of analogous results can be found in the circulating 
fluidized bed literature. Moreover, in most cases, the transition results in a sharp change in the 
linear trend of the variation of c with Ws. As a consequence, the average relative velocity is constant 
in the similar profile regime, while, it increases with increasing concentration beyond the transition. 
However, the local relative velocity which can be deduced from [28] and [29] varies with c even as 
c-~0. 

The third point to which attention should be drawn concerns the fact that the functions on the 
r.h.s.s of [28]-[30] defining the flow patterns are unknowns, since [7], [21] and [26] cannot be solved 
without solving the closure problem. Consequently, at the present stage of our knowledge, the 
determination of the profiles falls to experimental investigation. The latter can, however, be guided 
by the theoretical considerations developed above. The profiles will obviously depend on the gas 
superficial velocity. A dependence upon gas density, particle density, particle size distribution as 
well as the pipe diameter is also naturally expected. But the solution of [27] which would give the 
solids velocity profile, requires the modelling of the srx term which is determined by the interparticle 
as well as wall-particle collisions. The effect of these collisions depend upon the shape of individual 
particles but also on the roughness and the physical nature of the wall which are determinant for 
the momentum transfer during wall-particle collisions. Moreover, as [7], [21] and [27] are intimately 
coupled by several terms, all the profiles are expected to depend on the same variables. In the 
experimental determination of the profiles, and thus, also of the correlations involving overall 
variables, the properties of the wall should be considered among the relevant operating conditions. 
This latter remark explains, at least partly, the failure of all the "unified" pressure drop correlations 
reviewed by Muzyka (1985). 

CONCLUSIONS 

Self-similar concentration and solids velocity profiles have been shown to be solutions to general 
probabilistic multiphase flow equations under fully developed flow conditions as the average solids 
concentration tends toward zero. While the theoretical analysis was only able to demonstrate that 
this result is possible, the experimental evidence available in the literature strongly suggests that 
similar profiles are a characteristic feature of dilute suspension flows at constant superficial gas 
velocity. 

The analysis further suggests that the deviation from similar profiles as solids concentration is 
increased can be deduced from relationships between the overall properties (in particular, the plot 
of the solids rate vs average concentration) of the flow. This too is consistent with available 
experimental measurements on the transition from dilute to dense flow regimes. Finally, the 
multiphase flow equation analysis provides a partial explanation for the difficulty associated with 
developing generalizable suspension pressure drop correlations. 
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A P P E N D I X  

In the probabilistic Eulerian approach used by Molodtsof & Muzyka (1989) to derive the general 
equations, mean local variables of a phase are defined using the "immediate" (i.e. actual and 
random) Eulerian variables of that phase. This definition is based on the use of the phase 
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characteristic functions such as £p(Xi, t), which takes on the value of 1 when the point whose 
coordinates are x~ is located within phase p and is equal to 0 in all other cases. Kp is a random 
variable as indicated by the ^ superscript. The probability of the presence of phase p is defined 
as the probabilistic mean (or expected value) of/~'p: 

ep(Xi, t) = Kp(Xi, t), [A.1] 

where the overbar indicates the ensemble averaging operator. Although /~p is a piecewise 
continuous function of space coordinates and time, ep is defined throughout the mixture and can 
be considered in most applications, as a continuously differentiable function. 

When a physical variable ~, associated with phase p is under consideration, its associated 
probabilistic mean ~p is defined as follows: 

E.~0. = £,  q~,. [A.21 

Hence, for the phase mean value t,= of the fluid viscous stress component ~,= one has 

efz,x =/~r¢,=. [A.3] 

For an incompressible Newtonian fluid f,= is related to the random fluid velocity components by 
the following constitutive equation: 

Consequently, substituting [A.4] in [A.3], and considering /(c as a distribution (or generalized 
function) which corresponds to its real nature, one obtains: 

Ef'Crx = sI~ [~X (l~f 0r) ~-rr Or l" [A.5] 

The derivatives of the characteristic function with respect to space coordinates are the 
components of a vectorial delta distribution non-zero at the interface. The probabilistic mean of 
the product of a random physical variable qgp by such a derivative, therefore, corresponds to an 
average of the values taken on by the variable along the interface (Molodtsof & Muzyka 1989). 
In order to be consistent with definitions such as [A.2], the "interfacial mean" q~ of q~p is defined 
in the form: 

P Ox~ P Ox~ " 
When [A.2] and [A.6] written for the fluid velocity components are substituted in [A.5], one obtains: 

EfTrx= ~[~-~ ((.fUr)'4-~r (EfUx)]-- ~( U' ~'3t- Ulx ~ ) . [A.7] 

In fully developed flow the axial derivatives of the phase presence probabilities are zero as well 
as the radial component of the fluid velocity. Therefore, in [A.7] the first and third terms on the 
r.h.s, vanish identically and the equation reduces to 

c3 0El [A.8] 
Ef'~rx = ~ r  ( E f U r )  - -  ] ' l U l  O-r  " 

Along the fluid-particle interface, the jump condition for the velocity components is the no-slip 
condition. Moreover, the derivatives of the characteristic functions of the fluid and solids phases 
are equal with the opposite sign, all along the interface. Consequently, according to [4], one has 

I 0el &s [A.9] U=~r = vi &, 

where VI is the axial component of the "interracial mean" solids velocity. Substituting [A.9] in [A.8] 
then gives 

[o 0 s] 
Er~,==g ~r (ERE)+ Vl 0rJ" [A.10] 


